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Abstract 

 

This paper is concerned with introducing discrete Burr Type 𝐼𝐼 

distribution. The non-centrally moments, central moments, the skewness and 

the kurtosis measures are obtained. Reliability, hazard rate, quantile, mode and 

median are derived. Distribution of the smallest, the largest order statistics, the 

lower record value and the upper record value are obtained. Parameter 

estimation using maximum likelihood method and Bayesian approach is 

obtained. To illustrate the proposed model, numerical example was given. 
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1. Introduction 

Burr distributions have numerous applications. For example, in 

problems related to hypothesis testing, lifetime data, statistical quality control, 

in survival and reliability studies. In addition, it is employed in financial 

studies, economics, income and wage distribution as well as in environmental 

studies.  

Roy (2003) pointed out that the normal distribution is playing a key 

role in stochastic modeling for a continuous setup. But its distribution function 

does not have an analytical form. For this requirement they proposed a discrete 
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version of the continuous normal distribution. Characterization results are 

made to establish a direct link between the discrete normal distribution and its 

continuous counterpart. The corresponding concept of a discrete approximator 

for the normal deviate are suggested. An application of the discrete normal 

distributions for evaluating the reliability of complex systems is elaborated as 

an alternative to simulation methods. 

Krishna and Pundir (2009) obtained discrete Burr and Pareto 

distributions using the general approach of discretizing a continuous 

distribution and proposed them as suitable lifetime models. Some important 

distributional and estimation of reliability characteristics are discussed. An 

application in reliability estimation in series system and a real data example 

on dentistry using this distribution is also discussed. 

 Jazi et al. (2010) proposed a discrete inverse Weibull distribution. 

They showed that the hazard rate function can attain a unimodal or monotone 

decreasing shape for certain values of parameters. They studied four methods 

of estimation (the heuristic algorithm, the inverse Weibull probability paper 

plot, the method of moments and the method of proportions). From the results 

of extensive simulation runs, their accuracies and precisions are compared. It 

is found that for right skewed discrete inverse Weibull distributions, the last 

two methods seem wanting due to certain characteristics of the estimation 

procedures and numerical convergence. The inverse Weibull probability paper 

plot and the heuristic method fare better. Finally, a discrete data set is f itted 

by both the discrete Weibull and the discrete inverse Weibull and their AICs 

are compared.  

Gómez-Déniz and Calderín-Ojeda (2011) introduced a new probability 

mass function by discretizing the continuous failure model of the Lindley 

distribution. The model obtained is over-dispersed and competitive with the 

Poisson distribution to fit automobile claim frequency data. After revising 

some of its properties a compound discrete Lindley distribution is obtained in 

closed form. This model is suitable to be applied in the collective risk model 

when both number of claims and size of a single claim are implemented into 

the model. The new compound distribution fades away to zero much more 

slowly than the classical compound Poisson distribution, being therefore 

suitable for modelling extreme data. 
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AL-Huniti and AL-Dayian (2012) introduced the discrete Burr Type 

III distribution using the general approach of discretizing a continuous 

distribution and proposed it as a suitable lifetime model. The equivalence of 

continuous and discrete Burr Type III distribution is established. Some 

important distributional properties and estimation of the parameters, 

reliability, failure rate and the second rate of failure functions are discussed 

based on the maximum likelihood method and Bayesian approach. 

Chakraborty and Chakravarty (2012) derived a two-parameter discrete 

gamma distribution which is corresponding to the continuous two parameters 

gamma distribution using the general approach for discretization of 

continuous probability distributions. One parameter discrete gamma 

distribution is obtained as a particular case. A few important distributional and 

reliability properties of the proposed distribution are examined. Parameter 

estimation by different methods is discussed. Performance of different 

estimation methods are compared through simulation. Data fitting is carried 

out to investigate the suitability of the proposed distribution in modeling 

discrete. Failure time data and other count data. 

Nekoukhou et al. (2015) introduced a discrete analogue of beta – 

exponential distribution which is more plausible in modeling discrete data and 

exhibits both increasing and decreasing hazard rates. They studied some basic 

distributional and moment properties of the new distribution. Then certain 

structural properties of the distribution such as its unimodality, hazard rate 

behavior and Renyi entropy are discussed. Using the maximum likelihood 

method estimation of the model parameters is also investigated. The model is 

examined with areal data set and compared with its rival model that is the 

discrete generalized exponential distribution. 

Para and Jan (2016) proposed a discrete three parameter Burr Type XII 

distribution and discrete Lomax distribution as new discrete models using the 

general approach of discretization of continuous distribution. They studied 

some basic distributional and moment properties of these new distributions. 

Then, certain structural properties of the distributions such as their 

unimodality, hazard rate behaviors and the second rate of failure functions are 

discussed. Various theorems relating a three-parameter discrete Burr Type XII 

distribution and discrete Lomax distribution with other statistical distributions 
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are proved. They are examined the models with data set of counts of cysts of 

kidneys using steroids and compared with the classical models. 

Oliveira et al. (2017) studied an alternative discrete Lindley 

distribution to those study in G´omez-D´enize Calder´ın-Ojeda (2011) and 

Bakouch et al. (2014). For both distributions, a simulation study is carried out 

to examine the bias and mean squared error for the maximum likelihood 

estimators of the parameters as well as the coverage probability and the width 

of the confidence intervals. For the discrete Lindley distribution obtained by 

infinite series method they presented the analytical expression for bias 

reduction of the maximum likelihood estimator. Some examples using real 

data from the literature showed the potential of these distributions. Despite the 

discretization methods are quite different, the resulting distributions are 

interchangeable, however the distribution generated by an infinite series has 

simple mathematical expressions and can be used directly to count data in the 

presence of covariates. 

 Para and Jan (2017) introduced a new count data model which is 

obtained by compounding discrete Burr Type XII distribution with Minimax 

distribution. Several distributional properties of the model are discussed. Real 

data set is analyzed to investigate the suitability of the proposed distribution 

in modeling count. 

This paper is divided into five sections. The first section is the 

introduction. The second section contains discretizing the continuous 

distribution. The third section is devoted to the model of the discrete Burr Type 

𝐼𝐼 distribution.Section four contains the estimation of the parameter. Section 

five contains the numerical study. 

2. Discretizing a Continuous Distribution 

A continuous failure time model can be used to generate a discrete 

model by introducing a grouping on the time axis. If the underlying continuous 

failure time X has the reliability function (RF), 𝑅(𝑥) = 𝑝(𝑋 ≥ 𝑥) and times 

are grouped into unit intervals so that the discrete observed variable is 𝑑𝑋 =

[𝑋] the largest integer part of 𝑋 the probability mass function (𝑝𝑚𝑓) of 𝑑𝑋 

can be written as 
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𝑝(𝑥) = 𝑝[𝑑𝑋 = 𝑥] = 𝑝(𝑥 ≤ 𝑑𝑋 ≤ 𝑥 + 1) = 𝑅(𝑥) − 𝑅(𝑥 + 1), 𝑋

= 0,1,2, …                                                                                       (1) 

The 𝑝𝑚𝑓 of discrete random variable (𝑑𝑋) can be viewed as discrete 

concentration of the 𝑝𝑑𝑓 of  𝑋. The first and easiest in this approach is the 

geometric distribution with 𝑝𝑚𝑓 

𝑝(𝑥) = 𝜃𝑥 (1 − 𝜃) = 𝜃𝑥 − 𝜃𝑥+1 , 𝑋 = 0,1,2, …                                               (2) 

This is obtained by discretizing the exponential distribution with RF 

𝑅(𝑥) = 𝑒−𝜆𝑥 = 𝜃𝑥  , 𝜆, 𝑥 > 0 Here 𝜃 = 𝑒−𝜆, (0 < 𝜃 < 1) → 𝑅(𝑥) = 𝜃𝑥  

3. The Model of the Discrete Burr Type 𝑰𝑰 Distribution 

3.1. Continuous Burr Type 𝑰𝑰 Distribution 

A lifetime 𝑟𝑣 𝑋 follows the Burr Type 𝐼𝐼 distribution Burr 𝐼𝐼(𝑘) if its 

𝑝𝑑𝑓 is given by 

𝑓(𝑥) = 𝑘𝑒−𝑥(1 + 𝑒−𝑥)−(𝑘+1) , −∞ < 𝑥 < ∞ , 𝑘 > 0                                     (3) 

and its cumulative distribution function is given by 

𝐹(𝑥) = (1 + 𝑒−𝑥)−𝑘 , −∞ < 𝑥 < ∞, 𝑘 > 0                                                       (4) 

The corresponding reliability function (𝑅𝐹) failure rate function (𝐻𝑅𝐹) are 

respectively given by 

𝑅(𝑥) = 1 − (1 + 𝑒−𝑥)−𝑘  , −∞ < 𝑥 < ∞, 𝑘 > 0                                               (5) 

ℎ(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
=

𝑘𝑒−𝑥(1 + 𝑒−𝑥)−(𝑘+1)

1 − (1 + 𝑒−𝑥)−𝑘  , −∞ < 𝑥 < ∞, 𝑘 > 0                      (6) 

The plots of the 𝑝𝑑𝑓(𝑥) and ℎ(𝑥) are provided in Figures (1) and (2) 

respectively 



www.manaraa.com

6 

 

 

Figure (1) 𝑝𝑑𝑓(𝑥) for 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼 distribution at 𝜃 = 1.5 

From Figure (1) it is noticed that 𝑝𝑑𝑓(𝑥) is approximately has exponential 

distribution. 

 

Figure (2) ℎ(𝑥) for 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼 at 𝜃 = 1.5 

From Figure (2) it is noticed that ℎ(𝑥) for 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼 distribution is decreased 

then it becomes constant. 

3.2 Discrete Burr Type 𝑰𝑰 Distribution: 

Based on the reliability function of continuous Burr 𝐼𝐼 𝑟𝑣 𝑋 which is 

given by (5) the 𝑅(𝑥) for 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝑘, 𝜃) distribution at integer point of 𝑋 is 

given by:  

𝑅(𝑥) = 1 − 𝜃log(1+𝑒−𝑥 ) 

where 𝜃 = 𝑒−𝑘  𝑎𝑛𝑑 (0 < 𝜃 < 1)                                                                         (6) 
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Now by using (1) the 𝑝𝑚𝑓 of the discrete Burr Type 𝐼𝐼 distribution with 

parameter 𝜃 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) can be defined as: 

𝑝(𝑥) = 𝑅(𝑥) − 𝑅(𝑥 + 1) = 𝜃 log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥) , 

𝑥 = −∞, … ,0,1,2, …                                                                                                (7) 

and the cumulative distribution function is given by: 

𝐹(𝑥) = 𝜃log(1+𝑒−𝑥)   , 

𝑥 = −∞, … ,0,1,2, …                                                                                                (8) 

The 𝑟𝑡ℎ non-centrally moments of 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) is given by: 

𝜇�́� = 𝐸(𝑋𝑟 ) = ∑ 𝑥𝑟𝑝(𝑥)

∞

𝑥=0

= ∑ 𝑥𝑟 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]                                  (9)

∞

𝑥=0

 

• The mean of lifetime 𝜇 of 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) can be obtained by using (9) 

as follows: 

𝜇1́ = 𝜇 = ∑ 𝑥 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥 )]                                              (10)

∞

𝑥=0

 

• the second non-centrally moment is given by: 

𝜇2́ = ∑ 𝑥2 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]                                                    (11)

∞

𝑥=0

 

• The 3𝑟𝑑  non-centrally moment is given by: 

𝜇3́ = ∑ 𝑥3 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]                                                    (12)

∞

𝑥=0

 

• The 4𝑡ℎ non-centrally moment is given by: 
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𝜇4́ = ∑ 𝑥4 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]                                                    (13)

∞

𝑥=0

 

The central moments of 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) are given by: 

• The variance 𝑉(𝜃) of 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) can be obtained by using 𝐸𝑞𝑠. (10) 

and (11) as follows: 

𝑉(𝜃) = 𝜇2́ − 𝜇2 

= ∑ 𝑥2 [𝜃 log(1+𝑒 −(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

∞

𝑥=0

− [∑ 𝑥 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃 log(1+𝑒−𝑥)]

∞

𝑥=0

]

2

                            (14) 

• The 3𝑟𝑑  centrally moment is given by: 

𝜇3 = 𝜇3́ − 2𝜇2́𝜇 + 𝜇3 = ∑ 𝑥3 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃 log(1+𝑒 −𝑥)] −

∞

𝑥=0

 

2 ∑ 𝑥2 [𝜃 log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)] {∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

∞

𝑥=0

}

∞

𝑥=0

 

+ [∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

∞

𝑥=0

]

3

                                                        (15) 

• The 4𝑡ℎ centrally moment is given by: 

𝜇4 = 𝜇4́ − 4𝜇3́𝜇 + 6𝜇2́𝜇2 − 3𝜇4 = ∑ 𝑥4 [𝜃 log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥 )]

∞

𝑥=0

 

−4 {∑ 𝑥3 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

∞

𝑥=0

} {∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

∞

𝑥=0

} 
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+6 {∑ 𝑥2 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

∞

𝑥=0

} {∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

∞

𝑥=0

}

2

 

−3 {∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒 −𝑥)]

∞

𝑥=0

}

4

                                                     (16) 

• The skewness measure 𝛼3 of 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) can be obtained by using 

𝐸𝑞𝑠. (10), (11) and (12) as follows: 

𝛼3 =
𝜇3́ − 2𝜇2́𝜇 + 𝜇3

𝑉
3

2⁄
 

=
∑ 𝑥3 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃 log(1+𝑒−𝑥)] − 2 ∑ 𝑥2 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞

𝑥=0
∞
𝑥=0

[∑ 𝑥2[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)] − [∑ 𝑥[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞
𝑥=0 ]

2
∞
𝑥=0 ]

3
2

 

=
∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞

𝑥=0 + [∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞
𝑥=0 ]

3

[∑ 𝑥2[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)] − [∑ 𝑥[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞
𝑥=0 ]

2
∞
𝑥=0 ]

3
2

 (17) 

• The kurtosis 𝛼4 of 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) can be obtained by using 𝐸𝑞𝑠. (10), 

(11), (12), and (13) as follows: 

𝛼4 =
𝜇4́ − 4𝜇3́𝜇 + 6𝜇2́𝜇2 − 3𝜇4

𝜇2
2  

=
∑ 𝑥4 [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)] − 4 {∑ 𝑥3 [𝜃 log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞

𝑥=0 }∞
𝑥=0

[∑ 𝑥2[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)] − [∑ 𝑥[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞
𝑥=0 ]

2
∞
𝑥=0 ]

2 

=
{∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞

𝑥=0 } + 6 {∑ 𝑥2 [𝜃 log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞
𝑥=0 }

[∑ 𝑥2[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)] − [∑ 𝑥[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞
𝑥=0 ]

2
∞
𝑥=0 ]

2   (18) 

{∑ x [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞
𝑥=0 }

2
− 3 {∑ x[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞

𝑥=0 }
4

∑ 𝑥2[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)] − [∑ 𝑥[𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]∞
𝑥=0 ]

2
∞
𝑥=0
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3.3 Quantile function is: 

𝐹(𝑞) = 𝑝 → 𝐹[𝜃 log(1+𝑒−𝑞)] = p  

It can be shown from the previous equation that the 𝑞𝑡ℎ quantile function for 

the 𝑑𝐵𝑢𝑟𝑟  𝐼𝐼(𝜃) distribution is: 

𝑞 = ln (
1

𝑝 − 1 − 𝜃
)                                                                                               (19) 

at 𝑞 = 0.5 the median of 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) distribution is obtained. 

• We have shown that the mode of the random variable 𝑋 using the 

recurrence relation is: 

𝑚𝑜𝑑𝑒 =
𝜃 log(1+𝑒−(𝑥+2)) − 𝜃log(1+𝑒−(𝑥+1))

𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)
                                                       (20) 

Let 𝑥1,𝑥2, … , 𝑥𝑛 be any real valued random variables and its ordered values 

denoted as 𝑥(1) ≤ 𝑋 ≤ ⋯ ≤ 𝑥(𝑛) then the values𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛) are 

the order statistics of the random variable, 𝑋. 

It can be shown that, the 𝑝𝑑𝑓 of the 𝑟𝑡ℎ order statistic is given by: 

• 𝑓(𝑟)(𝑥(𝑟)) =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
[𝐹(𝑥(𝑟)]

𝑟−1
[1 − 𝐹(𝑥(𝑟)]

𝑛−𝑟
𝑓(𝑥(𝑟)) 

=
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
[𝜃log(1+𝑒

−𝑥(𝑟))]
𝑟−1

[1 − 𝜃log(1+𝑒
−𝑥(𝑟))] ∗ 

[𝜃log(1+𝑒
−(𝑥(𝑟)+1)

) − 𝜃log(1+𝑒
−𝑥(𝑟))]                                                                   (21) 

It can be shown that the density of the 𝑛𝑡ℎ  ordered statistics follows the 

𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) distribution is as follows: 

• 𝑓(𝑛)(𝑥(𝑛)) = 𝑛[𝐹(𝑥(𝑛)]
𝑛−1

𝑓(𝑥(𝑛)) 

= 𝑛 [𝜃log(1+𝑒
−𝑥(𝑛))]

𝑛−1

[𝜃log(1+𝑒
−(𝑥(𝑛)+1)

) − 𝜃log(1+𝑒
−𝑥(𝑛))]                       (22) 
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Suppose that the smallest value follows the 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) distribution then it 

can be shown that the density of the smallest order statistic is given by: 

• 𝑓(1)(𝑥(1)) = 𝑛[1 − 𝐹(𝑥(1)]
𝑛−1

𝑓(𝑥(1)) 

= 𝑛 [1 − 𝜃log(1+𝑒
−𝑥(1))]

𝑛−1

[𝜃log(1+𝑒
−(𝑥(1)+1)

) − 𝜃log(1+𝑒
−𝑥(1))]                (23) 

It can be shown that the upper record value is: 

• 𝑓𝑈(𝑛) (𝑥) =
1

Γ(𝑛)
[− log(1 − 𝐹(𝑥))]

𝑛−1
𝑓(𝑥) 

=
1

Γ(𝑛)
[1 − log (𝜃log(1+𝑒

−𝑥𝑢(𝑛) ))]
𝑛−1

[𝜃
log(1 +𝑒

−(𝑥𝑢(𝑛)+1)
)

− 𝜃log(1+𝑒
−𝑥𝑢(𝑛) )]  (24) 

It can be shown that the lower record value is: 

• 𝑓𝐿(𝑛)(𝑥) =
1

Γ(𝑛)
[− log(𝐹(𝑥))]

𝑛−1
𝑓(𝑥) 

=
1

Γ(𝑛)
[− log (−𝜃log(1+𝑒

−𝑥𝑙(𝑛) ))]
𝑛−1

[𝜃
log(1+𝑒

−(𝑥𝑙(𝑛)+1)
)

− 𝜃 log(1+𝑒
−𝑥𝑙(𝑛) )]      (25) 

Suppose that 𝑈 is the standard uniform variate. It can be shown that 

the random variable 𝑋: 

𝑋 = ln (
1

𝑈 − 1 − 𝜃
)                                                                                             (26) 

follows the 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) distribution and is used to generate the random 

variable for the distribution assuming 𝜃 is known. 

4. Estimation of the Parameter of 𝒅𝑩𝒖𝒓𝒓 𝑰𝑰(𝜽): 

4.1. Estimation of the parameter based on the ML method 

 The maximum likelihood method is used to estimate the parameter of 

the 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃)  distribution. Let (𝑥1,𝑥2, … , 𝑥𝑛) be a random sample from 

𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) distribution with density function as 𝑓(𝑥; 𝜃). The likelihood 

function of the 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) distribution for the parameter 𝜃 is given as  
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𝐿(𝑥; 𝜃) = ∏ 𝑓(𝑥; 𝜃)

𝑛

𝑖=1

= ∏ [𝜃 log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

𝑛

𝑖=1

                                    (27) 

𝐿(𝑥; 𝜃) = ∏ [𝜃 log(1+𝑒−𝑥) [𝜃
log(

1+𝑒−(𝑥+1)

1+𝑒−𝑥 )
− 1]]

𝑛

𝑖=1

                                        (28) 

where 𝜙(𝑥𝑖 ) = log (
1+𝑒−(𝑥+1)

1+𝑒−𝑥 ) 

and   

Log 𝐿(𝑥; 𝜃) = ∑ {log(1 + 𝑒−(𝑥+1)) log 𝜃 + log[𝜃𝜙(𝑥𝑖 ) − 1]}𝑛
𝑖=1                (29)       

Partially differentiating (29) with respect to the parameter 𝜃 we have the 

following equation 

𝜕 log 𝐿

𝜕𝜃
= ∑ [

log(1+𝑒−(𝑥+1))

�̂�
+

𝜙(𝑥𝑖 )�̂�𝜙(𝑥𝑖)−1

�̂̂�𝜙(𝑥𝑖)−1
] = 0𝑛

𝑖=1                                             (30)                                       

The maximum likelihood estimate (MLEs) of 𝜃 can be obtained by solving 

(30) numerically.      

 

4.2. Bayesian Estimation: 

The probability density function (𝑝𝑑𝑓) and cumulative distribution 

function (𝑐𝑑𝑓) of the discrete Burr Type 𝐼𝐼 distribution are given respectively 

as: 

 𝑓(𝑥, 𝜃) = 𝜃log(1+𝑒−(𝑥+1)) − 𝜃 log(1+𝑒−𝑥) , −∞ < 𝑋 < ∞;  𝜃 > 0                (31) 

𝐹(𝑥, 𝜃) = 𝜃log(1+𝑒−𝑥),−∞ < 𝑋 < ∞;  𝜃 > 0                                                  (32) 

where 𝜃 is the shape parameter. 

4.2.1. Loss Functions and Posterior Distribution 

We will use the following loss functions: 

1. The squared error loss function (SELF) is a symmetric loss function 

and takes the form: 

𝐿(𝜃, �̂�) = 𝑐(𝜃 − �̂�)2                                                                                             (33) 
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where 𝑐 denotes a constant and �̂� is an estimator. The Bayes estimator with 

respect to a quadratic loss function is the mean of the posterior distribution 

which takes the form: 

�̂�𝐵 = 𝐸(𝜃|𝑋) = ( | x)d


   = ∫ 𝜃𝜋(𝜃|𝑥)𝑑𝜃
∞

0

                     

2. Calabria and Pulcini (1996) presented a general entropy (GE) loss 

function when it appears to be realistic to express the loss in terms of 

the ratio(
�̂�

𝜃
) and defined it as: 

𝐿(𝜃, �̂�) = (
�̂�

𝜃
)

𝑞

− q 𝑙𝑜𝑔 (
�̂�

𝜃
) − 1                                                                     (34) 

whose minimum occurs at �̂� = 𝜃. This loss function is a generalization of the 

entropy loss used by several authors where the shape parameter 𝑞 = 1 [Dey 

and Liu (1992)]. When 𝑞 > 0 a positive error (�̂� > 𝜃) causes serious 

consequences than a negative error. The Bayes estimator �̂�𝐺𝐸  of 𝜃 under GE 

loss is 

�̂�𝐺𝐸 = [𝐸𝜃 (𝜃−𝑞)]−1/𝑞 = ∫ 𝜃−1𝜋(𝜃|𝑥)𝑑𝜃
∞

0

                                                    (35) 

Provided that the expectation [𝐸𝜃(𝜃−𝑞)]−1/𝑞exists and finite where𝐸𝜃  denotes 

the expected value with respect to the posterior function of 𝜃 

The posterior distribution: 

The likelihood function can be obtained as: 

𝐿(𝜃|𝑋) = ∏ [𝜃 log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]                                                (36)

𝑛

𝑖=1

 

We can use the gamma distribution as a conjugate prior distribution of  with 

parameters a and b as: 

𝜋(𝜃|𝑎, 𝑏) =
𝑏𝑎

Γ(a)
𝜃𝑎−1𝑒−𝑏𝜃  , 𝜃 > 0, 𝑎, 𝑏 > 0                                                  (37) 
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where Γ(a) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
∞

0
  is Gamma function, hyper parameters 𝑎 >

 0, 𝑏 >  0  

The posterior distribution of  can be obtained by combining 𝐸𝑞𝑠. (36) and 

(37) to be: 

𝜋(𝜃|𝑥) = 𝐿(𝜃|𝑋)𝜋(𝜃|𝑎, 𝑏) = (
𝑏𝑎

Γ(a)
𝜃𝑎−1𝑒−𝑏𝜃) 

∏ [𝜃log(1+𝑒−(𝑥+1)
) − 𝜃log(1+𝑒−𝑥)]𝑛

𝑖=1 , (𝜃, 𝑎, 𝑏) > 0                                                                    (38)  

The Bayes estimator with respect to the quadratic loss function is the mean of 

the posterior distribution as follows: 

𝐸(𝜃|𝑥) = ∫ 𝜃
∞

0

𝜋(𝜃|𝑥)𝑑𝜃 

= ∫ 𝜃 (
𝑏𝑎

Γ(a)
𝜃𝑎−1𝑒−𝑏𝜃 ) ∏ [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]

𝑛

𝑖 =1

𝑑𝜃                         (39)
∞

0

 

          The Bayes estimator with respect to the GELF loss function is the mean 

of the posterior distribution as follows: 

�̂�𝐺𝑒 = [𝐸𝜃(𝜃−𝑞)]−1/𝑞 = ∫ 𝜃−1𝜋(𝜃|𝑥)𝑑𝜃
∞

0

 

= ∫ 𝜃−1 (
𝑏𝑎

Γ(a)
𝜃𝑎−1𝑒−𝑏𝜃) ∏ [𝜃log(1+𝑒−(𝑥+1)) − 𝜃log(1+𝑒−𝑥)]𝑛

𝑖=1 𝑑𝜃   (𝑞 = 1)  (40)
∞

0
                 

                                          

5. Numerical Study 

5.1. Monte Carlo Simulation using MLE's 

 

 

Some numerical results based on the MLE's of 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) distribution is 

obtained according the following steps: 

1) Given initial value 𝜃0  generate random samples of size (𝑛 = 30,100) 

from the 𝑑𝐵𝑢𝑟𝑟 𝐼𝐼(𝜃) by observing that if U is uniform (0,1) then 
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𝑋 = ln (
1

𝑈 − 1 − 𝜃
)  

which has the discrete Burr Type 𝐼𝐼 distribution. 

2) For each sample size 𝑛 and the initial value of shape parameter (θ) the 

MLE's of the parameter 𝜃 can be obtained by solving the nonlinear 

equation (30) numerically using Mathcad iteration scheme 

3) Repeat steps (1) - (2) m times where m=1000 for 𝑛 = 30,100 

4) The estimate and mean square error of the MLE's of the parameter (θ) 

are computed by averaging over the m repetitions  

The computation results are displayed in Table (1)  

 For the estimated parameter 𝜃 we assume that the actual population 

value is 𝜃 = 0.4. 

Table (1) display the estimation of the parameter, and the estimated mean 

square error of the maximum likelihood estimate of 𝜃 for different sample 

sizes. In this section MLE's of the shape parameter, 𝜃 of the discrete Burr Type 

𝐼𝐼 distribution is obtained. MLE'S is found by solving the nonlinear equation 

(30). 

Table (1) the estimate and mean square 

error of the MLE's of the parameter 

(𝛉 = 𝟎. 𝟒) at 𝒏 = 𝟑𝟎, 𝟏𝟎𝟎) 

𝑛 parameter estimation MSE 

30 𝜃 0.298 0.045 

100 𝜃 0.302 0.042 

 

Concluding Remarks 

It is noticed that the estimated mean square error is decreased as the sample 

size increased. 

5.2. Monte Carlo Simulation using Bayesian approach 

In this section a Monte Carlo Simulation is performed to assess the 

performance of the Bayesian estimate associated to the shape parameter 𝜃 of 

the discrete Burr Type 𝐼𝐼 distribution discussed in the previous sections. The 

simulation structure can be described in the following steps: 
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1. Set the true value of 𝜃 at (𝜃 = 0.05). We considered different sample 

sizes (𝑛 = 30,100) to study their effect on the resulting estimates. 

2. For given values of (𝑎0 = 2, 𝑏0 = 2) we generate 𝜃 from gamma 

distribution. 

3. Calculate Bayes estimates of the unknown shape parameter associated 

to the discrete Burr Type 𝐼𝐼 distribution according to the formulas that 

have been obtained. 

4. We repeated this process 1000 times and compute the Mean Square 

Error (MSE) for the estimate where 𝑀𝑆𝐸(�̂�) =
1

1000
∑ (�̂�𝑖 −1000

𝑖=1

𝜃)
2
where �̂� is the estimate of 𝜃. The simulation results are displayed 

in Table 2. 

The results of Bayesian estimation are displayed in Tables (2), (3). 

 

Table (2): Bayes, estimates based on (𝑺𝑬𝑳𝑭) for (𝒎 =

𝟏𝟎𝟎𝟎, 𝒏 = 𝟑𝟎, 𝟏𝟎𝟎, 𝜽 = 𝟎. 𝟎𝟓) 

𝑛 parameter estimation MSE 

30 𝜃 2.708 × 10−4 2.524 × 10−3 

100 𝜃 1.116 × 10−5 2.499 × 10−3 

 

From Table (2) it is noticed that the estimated mean square is decreased as the 

sample size increased. 

Table (3): Bayes, estimates based on (𝑬𝒏𝒕𝒓𝒐𝒑𝒚𝒇) for 

(𝒎 = 𝟏𝟎𝟎𝟎, 𝒏 = 𝟑𝟎, 𝟏𝟎𝟎, 𝜽 = 𝟎. 𝟎𝟓) 

𝑛 parameter estimation MSE 

30 𝜃 4.597 × 10−7 2.5 × 10−3 

100 𝜃 1.124 × 10−7 2.5 × 10−3 

From Table (3) it is noticed that the estimated mean square is decreased as the 

sample size increased. 
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It is noticed that the MSE of the shape parameter 𝜃 under the entropy function 

is less than the one under the squared error loss function when 𝑛 = 30 but the 

MSE of the shape parameter 𝜃 under the entropy function is larger than the 

one under the squared error loss function when 𝑛 = 100. 

5.3. An application using real data 

 

        This application is given by Bhaumik et al. (2009). The data refers to 

the vinyl chloride data obtained from clean upgradient monitoring wells in 

mg/l:  

5.1 1.2 1.3 0.6 0.5 2.4 0.5 1.1 8 

0.4 2 0.5 5.3 3.2 2.7 2.9 2.5 2.3 

1.8 0.9 2 4 6.8 1.2 0.4 0.2 0.8 

0.6 0.1 0.9 0.1 1 0.4 0.2   

 

Using the one-sample Kolmogorov – Smirnov test for goodness of fit 

the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.001 which is less than the significance level 𝛼 = 0.01 so 

the null hypothesis is rejected and the alternative hypothesis cannot be rejected 

so these real data has discrete Butt Type 𝐼𝐼 distribution.  

The descriptive statistics for these data are obtained in Table (4).  

Table (4) Descriptive Statistics for the real data of glass fibers 

N min max range mean S.D. 𝑄1 

34 0.1 8 7.9 1.88 1.95 0.5 

𝑄2 𝑄3 Skewness Kurtosis Lower 

bound 

Upper 

bound 

1.15 2.55 1.68 2.54 1.19 2.56 
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Since the value of the skewness measure is positive. So, the distribution of the 

data is skewed to the right. Also, since the value of the kurtosis measure is less 

than 3, so the distribution for the data is flat.  

The estimate of the parameter 𝜃 using both MLE's and Bayesian approach is 

displayed in Table (5). 

Table (5) Bayes estimates 

 

�̂� = 0.004 using MLE's 

�̂� = 0.017 under (𝑆𝐸𝐿𝐹) using Bayesian 

approach 

�̂� = 1.484 × 10−7under (𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐹) 

using Bayesian approach 

 

From Table (5) it is noticed that the estimate of the shape parameter 𝜃 under 

the entropy function is less than the one under the squared error loss function 

using the Bayesian approach and the one obtained using the ML method. 
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 ملخص بالعربي

المنفصل من النوع الثاني وقد تم اشتقاق العزوم  Burrهذا البحث يهتم بتقديم توزيع 

اللامركزية والمركزية وكل من مقياس الالتواء والتفرطح وكذلك تم اشتقاق دالة البقاء 

وتم اشتقاق التوزيع  .ودالة الفشل لهذا التوزيع وأيضا تم اشتقاق الوسيط والمنوال

مرتبة وتم تقدير معلمة الاحتمالي لكل من اصغر قيمة واكبر قيمة من الاحصاءات ال

وطريقة بييز وتم استخدام بيانات فعلية لتوضيح  التوزيع باستخدام طريقة الامكان الأكبر

 هذا التوزيع

 

 

 

 


